Fuzzy ART and Fuzzy ARTMAP with Adaptively Weighted Distances

نویسندگان

  • Dimitrios Charalampidis
  • Georgios C. Anagnostopoulos
  • Michael Georgiopoulos
  • Takis Kasparis
چکیده

In this paper, we introduce a modification of the Fuzzy ARTMAP (FAM) neural network, namely, the Fuzzy ARTMAP with adaptively weighted distances (FAMawd) neural network. In FAMawd we substitute the regular L1-norm with a weighted L1-norm to measure the distances between categories and input patterns. The distance-related weights are a function of a category’s shape and allow for bias in the direction of a category’s expansion during learning. Moreover, the modification to the distance measurement is proposed in order to study the capability of FAMawd in achieving more compact knowledge representation than FAM, while simultaneously maintaining good classification performance. For a special parameter setting FAMawd simplifies to the original FAM, thus, making FAMawd a generalization of the FAM architecture. We also present an experimental comparison between FAMawd and FAM on two benchmark classification problems in terms of generalization performance and utilization of categories. Our obtained results illustrate FAMawd’s potential to exhibit low memory utilization, while maintaining classification performance comparable to FAM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification

In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzz...

متن کامل

A New Approach to Simplified Fuzzy ARTMAP

A fuzzy ARTMAP system is a system for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequence of analog or binary input vectors. The original fuzzy ARTMAP system incorporates two fuzzy ART modules and an inter-ART module. Many different approaches have been proposed to modify fuzzy ARTMAP systems. In this paper, we proposed a new app...

متن کامل

New Geometrical Perspective of Fuzzy ART and Fuzzy ARTMAP Learning

In this paper we introduce new useful, geometric concepts regarding categories in Fuzzy ART and Fuzzy ARTMAP, which shed more light into the process of category competition eligibility upon the presentation of input patterns. First, we reformulate the competition of committed nodes with uncommitted nodes in an F2 layer as a commitment test very similar to the vigilance test. Next, we introduce ...

متن کامل

Weighted Fuzzy ARTMAP for Osteoporosis Detection

Osteoporotic is a health burden worldwide, resulting in reduction of physical activity, increased risk of mortality, and incremental medical cost. Mandibular trabecular patterns analyzed on dental panoramic radiographs have been widely studied for identifying postmenopausal women with low skeletal bone mineral density (BMD). In this paper we proposed a new method for detecting osteoporosis usin...

متن کامل

Boosted ARTMAP: Modifications to fuzzy ARTMAP motivated by boosting theory

In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003